Motions of Ethylammonium Ions in Solid Ethylammonium Chloranilate Studied by ¹H Nuclear Magnetic Resonance

Hiroyuki Ishida, Naoki Kumagae, and Setsuko Sato^a

Department of Chemistry, Faculty of Science, Okayama University, Okayama 700-8530, Japan ^a Department of Chemistry, Faculty of Education, Gifu University, Gifu 501-1193, Japan Reprint requests to Dr. H. I.; Fax +81-86-251-8497; E-mail: ishidah@cc.okayama-u.ac.jp

Z. Naturforsch. 56a, 523-526 (2001); received April 30, 2001

The motions of the ethylammonium ion in solid ethylammonium chloranilate, $C_2H_5NH_3^+ \cdot C_6HO_4Cl_2^-$, are studied by ¹H NMR second moment (M_2) and spin-lattice relaxation time (T_1) measurements. Reorientations of the CH₃ group about the C-C bond axis and the NH₃⁺ group about C-N bond axis were observed and their motional parameters were evaluated. The internal rotational barriers of the CH₃ and NH₃⁺ groups of an isolated $C_2H_5NH_3^+$ ion were estimated from *ab initio* molecular orbital calculations.

Key words: Nuclear Magnetic Resonance; Molecular Motion; Ethylammonium Ion; HF.

Introduction

Chloranilic acid (2,5-dichloro-3,6-dihydroxy-1,4-benzoquinone), a strong dibasic acid endowed with hydrogen-bond donor as well as acceptor groups, appears particularly attractive as a template for generating tightly bound self-assemblies with polarizable cations [1–6].

The title compound, $C_2H_5NH_3^+ \cdot C_6HO_4Cl_2^-$, crystallizes in the triclinic system (space group $P\bar{1}$) with a=7.201(2), b=10.348(2), c=7.190 (2) Å, $\alpha=95.59(2)^\circ$, $\beta=92.95(2)^\circ$, $\gamma=98.47(2)^\circ$, V=526.3(2) Å³, and Z=2 at room temperature [7]. A packing view of the crystal is shown in Figure 1. The molecules of the chloranilate ion form an O–H ...O hydrogen-bonded dimer,

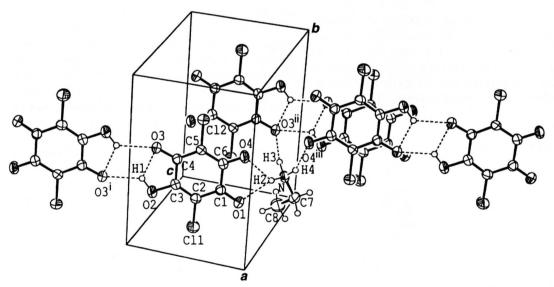


Fig. 1. ORTEP-3 [8] drawing of ethylammonium chloranilate. Thermal ellipsoids of non-H atoms are drawn at the 50% probability level, and H atoms are drawn as circles of arbitrary size. O-H...O and N-H...O hydrogen bonds are indicated by dashed lines [symmetry codes: (i) 2-x, 1-y, 2-z; (ii) 1-x, 1-y, 1-z; (iii) 1-x, 1-y, -z].

0932-0784 / 01 / 0600-0523 \$ 06.00 © Verlag der Zeitschrift für Naturforschung, Tübingen · www.znaturforsch.com

Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namensnennung-Keine Bearbeitung 3.0 Deutschland Lizenz.

This work has been digitalized and published in 2013 by Verlag Zeitschrift für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution-NoDerivs 3.0 Germany License.

Zum 01.01.2015 ist eine Anpassung der Lizenzbedingungen (Entfall der Creative Commons Lizenzbedingung "Keine Bearbeitung") beabsichtigt, um eine Nachnutzung auch im Rahmen zukünftiger wissenschaftlicher Nutzungsformen zu ermöglichen.

On 01.01.2015 it is planned to change the License Conditions (the removal of the Creative Commons License condition "no derivative works"). This is to allow reuse in the area of future scientific usage.

in which the molecules are related to each other by an inversion center. The ethylammonium ion links the three dimers of the chloranilate ion through N-H...O hydrogen bonds [N-H2...O1, N-H2...O4, N-H3 ...O3ⁱⁱ, and N-H4...O4ⁱⁱⁱ], forming a three-dimensional hydrogen-bond network. A weak C-H...O interaction between the methyl group of the cation and the anion is also observed [C8-H7...O1]. In the present study, we have measured the ¹H NMR spin-lattice relaxation time (T_1) and second moment (M_2) of the ¹H MNR linewidth in order to investigate the role of the hydrogen bonds in stabilizing the orientations of the NH₃ and CH₃ groups in the crystal. We also estimated the internal rotational barriers for the CH₃ and NH₃⁺ groups of an isolated C₂H₅NH₃⁺ ion from ab initio molecular orbital (MO) calculations.

Experimental

 $\rm C_2H_5NH_3^+\cdot C_6HO_4Cl_2^-$ was prepared by mixing an acetonitrile solution of chloranilic acid with an aqueous solution of ethylamine. The obtained crystal was recrystallized twice from methanol. The 1H NMR spin-lattice relaxation time (T_1) was measured at 32 MHz by the $180^\circ - \tau - 90^\circ$ method using the pulse spectrometer described in [9]. The experimental uncertainty was estimated to be within 10% for T_1 . The 1H NMR spectra were recorded on a JEOL JNM-MW-40S spectrometer operated at 40 MHz. MO calculations were performed using the Gaussian 98 package [10]. The second-order Møller-Plesset (MP2) method [11] with the 6-311G(d, p) basis set was used for geometry optimization and vibrational frequency calculations.

Results and Discussion

A. Molecular Orbital Calculation

In order to elucidate the internal rotational barriers for the CH₃ and NH₃⁺ groups around the C–C and C–N bond axes, respectively, in an isolated ethylammonium ion, we have made *ab initio* MO calculations with MP2/6-311G(d,p) level. The full optimizations without symmetry restrictions were carried out for three kinds of conformations of the cation: (i) the all-staggered conformation, (ii) the CH₃-eclipsed conformation, i.e. the conformation where only the CH₃ group is rotated by 60° about the C–C bond axis from the all-staggered form, (iii) the NH₃⁺-eclipsed conformation, i.e., the con-

Table 1. Optimized geometry (Å, °) for the all-staggered, the CH_3 -eclipsed, and the NH_3^4 -eclipsed conformations of the ethylammonium ion.

	Staggered	CH ₃ -eclipsed	NH ₃ ⁺ -eclipsed
C-C C-N C-H (CH ₃)	1.517 1.518 1.093 (× 2)	1.533 1.517 1.090 (× 2)	1.517 1.534 1.093 (× 2)
C-H (CH ₂) N-H	1.092 (× 1) 1.091 1.025	1.095 (× 1) 1.090 1.024 (× 2) 1.025 (×1)	1.092 (× 1) 1.090 1.024 (× 2) 1.025 (× 1)
C-C-N C-C-H (CH ₃)	110.2 111.5 (× 2) 108.6 (× 1)	110.4 110.8 (× 2) 111.8 (× 1)	110.3 111.4 (× 2) 108.7 (× 1)
C-C-H (CH ₂) C-N-H	112.5 110.9 (× 2) 112.2 (× 1)	113.0 111.0 (× 2) 112.0 (× 1)	112.3 112.0 (× 2) 111.1 (× 1)

formation where only the NH₃⁺ group is rotated by 60° about the C-N bond axis from the all-staggered form. For the optimized geometry of the three conformers see Table 1. The geometry of the all-staggered form is the same as that reported by Zeroka et al. [12]. The all-staggered conformation was confirmed to correspond to a potential energy minimum from the vibrational analysis, which shows only real frequencies for the optimized conformer. On the other hand, the CH₃- and NH₃⁺eclipsed conformations were found to correspond to a saddle point of first order from the presence of one imaginary frequency. The potential height for the internal rotation of the CH₃ group was evaluated from the difference in the electronic energy between the all-staggered conformation and the CH3-eclipsed conformation. The potential height for the NH₃⁺ rotation was obtained in a similar manner. The potential heights obtained are 14.1 and 11.9 kJ mol⁻¹ for the CH₃ and NH₃⁺ rotations, respectively. Thus, the internal rotational barriers were estimated to be 12.5 and 9.1 kJ mol⁻¹ for the CH₃ and NH₃⁺ groups, respectively, taking account of zero-point vibrational energies. The zero-point energies were approximated by one-half of the CH₃ and NH₃⁺ torsional frequencies, which were calculated to be 270 and 461 cm⁻¹, respectively, by Zeroka et al. [12].

B. ¹H NMR

The temperature dependence of the second moment (M_2) obtained from the resonance spectra is shown in Figure 2. The M_2 value at 117 K is (31.7 ± 2.0) G² $(1 \text{ G} = 1 \times 10^{-4} \text{ T})$. With increasing temperature, M_2 de-

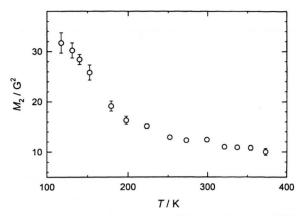


Fig. 2. Temperature dependence of the second moment (M_2) of H NMR linewidth observed for ethylammonium chloranilate at a Larmor frequency of 40 MHz (1 G = 10^{-4} T).

Table 2. Calculated second moment (M_2) of ¹H NMR linewidth in ethylammonium chloranilate

	$M_2/G^2 (1 \text{ G} = 10^{-4} \text{ T})$		
	Rigid	CH ₃ reorient.	$CH_3 + NH_3^+$ reorient.
Intra-cation Inter-ion	25.7 3.5	19.0 2.4	9.8 1.8
Total	29.2	21.4	11.6

creases and a constant value of (11 ± 1) G² is obtained above 320 K. To interpret the M_2 values, we calculated the values for each of the following motional states of the cation: (i) the rigid lattice, (ii) the C₃ reorientation of the CH₃ group about the C-C bond axis, (iii) the C₃ reorientation of the NH₃⁺ group about the C-N bond axis in addition to the CH₃ reorientation. In the calculation, all the bond angles except the C-C-N angle were assumed to be tetrahedral. The C-C-N angle and the bond lengths of C-C and C-N and were taken to be 111.0°, 1.497, and 1.490 Å, respectively, from the crystal data of the salt [7]. The C-H and N-H lengths were taken to be 1.092 and 1.025 Å from the result of the MO calculation as described above. Inter molecular magnetic dipole-dipole interactions were calculated from the crystal data. The calculated values for the motional modes are given in Table 2. By comparing the observed M_2 values with the calculated ones, the cations are expected to be rigid below 117 K. The M_2 values above 320 K can be explained by a model of the C₃ reorientations of the CH₃ and NH₃ groups.

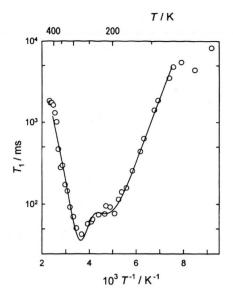


Fig. 3. Temperature dependence of the spin-lattice relaxation time (T_1) of ¹H NMR observed for ethylammonium chloranilate at a Larmor frequency of 32 MHz. The solid line shows the best-fitted values.

The temperature dependence of T_1 observed at 32 MHz is shown in Figure 3. A T_1 shoulder and a T_1 minimum appear around 200 and 270 K, respectively. Referring to the above discussion on M_2 , we can assign the T_1 shoulder to the reorientation of the CH₃ group motion and the T_1 minimum to the NH₃⁺ group motion. For these motions, T_1 can be expressed by the sum of the two BPP equations associated with the CH₃ and NH₃⁺ group motions [13]:

$$T_1^{-1} = C_1 f(\tau_1) + C_2 f(\tau_2), \tag{1}$$

$$f(\tau_i) = \tau_i / (1 + \omega^2 \tau_i^2) + 4\tau_i / (1 + 4\omega^2 \tau_i^2)$$
 (i = 1, 2), (2)

where τ_1 and τ_2 are correlation times for the CH₃ and NH₃⁺ group motions, respectively, and ω is the Larmor frequency. C_1 and C_2 are the motional constants for the CH₃ and NH₃⁺ groups, respectively. An Arrhenius-type relationship between τ and the activation energy (E_a) for the reorientation process was assumed:

$$\tau = \tau_0 \exp(E_a/RT), \tag{3}$$

where τ_0 is the correlation time at infinite temperature. Equations (1)–(3) were fitted to the T_1 data using a least-squares method. The E_a values of (15.1 ± 0.6) and (34 ± 3) kJ mol⁻¹ were obtained for the CH₃ and NH₃⁺ group reorientations, respectively. The much larger E_a

value for the NH₃⁺ group than the calculated internal rotational barrier of the NH₃⁺ group is interpreted in terms of the presence of strong N-H...O hydrogen bonds formed between the cation and the anion. On the other hand, the E_a value for the CH_3 group being slightly larger than the corresponding rotational barrier indicates the reorientation of the CH3 group to be under a low interionic potential, probably originating from the C-H...O interaction.

Acknowledgement

We are grateful to Prof. H. Tanaka, Okayama University, for his help in carrying out the MO calculations.

- H. Ishida and S. Kashino, Acta Cryst. C55, 1149 (1999).
- H. Ishida and S. Kashino, Acta Cryst. C55, 1714 (1999).
- H. Ishida and S. Kashino, Acta Cryst. C55, 1923 (1999).
- Md. B. Zaman, M. Tomura, and Y. Yamashita, Chem. Commun. 999 (1999).
- Md. B. Zaman, M. Tomura, and Y. Yamashita, Org. Lett. **2**, 273 (2000).
- H. Ishida and S. Kashino, Acta Cryst. C57, 476 (2001) H. Ishida and S. Kashino, Acta Cryst. C56, e202 (2000).
- L. J. Farrugia, ORTEP-3 for windows, University of Glasgow, Scotland 1997.
- H. Ishida, T. Iwachido, N. Hayama, R. Ikeda, M. Terashima, and D. Nakamura, Z. Naturforsch. 44a, 741 (1989).
- [10] Gaussian 98, Revision A.7, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas,
- J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople, Gaussian, Inc., Pittsburgh PA 1998.
- [11] C. Møller and M. S. Plesset, Phys. Rev. 46, 618 (1934).
- [12] D. Zeroka, J. O. Jensen, and A. C. Samuels, J. Mol. Struct. (Theochem) 465, 119 (1999).
- [13] A. Abragam, The Principles of Nuclear Magnetism, Oxford University Press, London 1961.